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DYNAMICAL APPROACH FOR POSITIVE SOLUTIONS OF SEMILINEAR
ELLIPTIC PROBLEMS IN UNBOUNDED DOMAINS

Dedicated to Klaus Kirchgisner on the occasion of his 70th birthday

We apply the trajectory dynamical systems approach to study the positive solutions of a semilinear elliptic
problem in an unbounded domain . The existence of the global attractor for the trajectory dynamical
system associated with this problem is proved. The symmetrization and stabilization properties of positive
solutions as |z| — oo are also established in three dimensional case Q) C R®.

1. Introduction.

It is well known that positive solutions of semilinear second order elliptic problems have
symmetry and monotonicity properties which reflects the symmetry of the operator and of
the domain, see e.g. [13, 6] for the case of bounded domains and [5, 7, 8, 9] for the case of
unbounded domains (such as Q = R™, Q = R, x R*!, cylindrical domains, etc.).

These results have been extended to the case of positive solutions of second order
parabolic problems in bounded symmetric domains in [16, 3, 4|. Moreover, the symmetrization
and stabilization properties of such solutions as ¢ — oo were investigated using the combination
of moving planes method with the classical methods of dynamical systems theory (such as
w-limit sets, attractors, etc.).

The main goal of the present paper is to apply the dynamical approach to study the
symmetrization and stabilization as |z| — oo properties of positive solutions of elliptic
problems in asymptotically symmetric unbounded domains. To the best of our knowledge
the use of dynamical systems methods for elliptic problems was initiated in the pioneering
paper of K.Kirchgéssner [18] where a local center manifold for a semilinear elliptic equation
on a strip was constructed, see also [10, 20, 17, 14| for further development and applications
of this construction.

One of the main difficulties which arises in dynamical study of elliptic equations is
the fact that the corresponding Cauchy problem is not well posed for such equations,
and consequently the straightforward interpretation of the elliptic equation as an evolution
equation leads to semigroups of multivalued maps even in the case of cylindrical domains, see
[2]. The usage of multivalued maps can be overcome using the so-called trajectory dynamical
approach (see |25, 27, 22]). Under this approach one fixes a signed direction [ in R™ which
will play the role of time. Then the space KT of all bounded solutions of the elliptic problem
in the unbounded domain  is considered as a trajectory phase space for the semi-flow T}
of translations along the direction [ defined via

(Tgu)(m) =u(z+hl), heR,, ue K*

In order the trajectory dynamical system (TE, K™) to be well defined one evidently needs
the domain € to be invariant with respect to positive translations along the [ directions:

TQcQ, Tlz=z-h
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The above approach was applied in [25, 22, 21| for study the elliptic boundary value problems
in cylindrical domains and in [27]| for more general class of unbounded domains, see also
[23. 11] for application to evolution problems for which the uniqueness problem is not solved
vet (e.g., for 3D Navier-Stokes equations) and [12] for another possibility to avoid the usage
of multivalued maps in the case of elliptic equations in cylindrical domains.

In this paper we apply the trajectorv dynamical systems approach to more detailed
study the asymptotic behavior of positive solutions of the following model elliptic boundary
problem in an unbounded domain z := (21, z2, 23) € Q4 =Ry x Ry x R™

{Axu — fu) =0;

ulxl:():uo; u‘ =i

(1.1)

.'.!‘:2=U o

It is assumed that the nonlinear term f(u) satisfies the following conditions:

1. f € CY(R,R),
2. f(w)v > -C+av|?, a>0, (1.2)
3. f(0) <0

(see the last section for the relaxation of these conditions).
As it is mentioned above we consider nonnegative solutions of problem (1.1):

u(z) >0z € Qy (1.3)

and study their behavior when z; — +oo. Thus, in our situation the zj-axis will play the
role of time (I := (1,0,0)). Moreover we restrict ourselves to consider only bounded with
respect to x — oo solutions of (1.1). To be more precise, a bounded solution of (1.1) is
understood to be a function u € C7*?(Q) for some fixed 0 < 8 < 1, which satisfies (1.1)
in a classical sense (in a fact due to the interior estimates this assumption is equivalent to
u € Cy(Q24) but we prefer to work with classical solutions). Therefore the boundary data is

assumed to be nonnegative uy(z2,z3) > 0 and belonging to the space
g € CHEIQ,), (£5,%3) € g =R x B* (1.4)
Here and below we denote

Cbg'h@(V) o= {’U,g 4 ||’U.0||CE+;3 = ?ug”'u,o”c2+ﬁ(3énv) < OO} (15)
€

where Bf means a ball of radius r centered in .

The paper is organized as follows.

The ‘dissipative’ with respect to £; — oo a priori estimate for the positive solutions of
(1.1) which allows to apply the trajectory approach to our situation and in particular gives
the existence of at least one nonnegative solution of (1.1) is derived in Section 2.

In Section 3 we construct the trajectory dynamical system (T3, K™") associated with
problem (1.1), where K* C C**#(Q,) is a set of all bounded nonnegative solutions of
problem (1.1) (with all admissible boundary data ug) endowed by the local topology induced
by the embedding

Kool mn

loc
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and (Thu)(zy, 2, T3) = u(zy + h,zs,x3) is the translation with respect to x; direction.
Moreover, it is proved here that the dynamical system thus obtained possesses a global
attractor A which is called the trajectory attractor of equation (1.1).

Section 4 is devoted to a more comprehensive study of three dimensional case (n = 1,
2, =R, xR, xR). In this case, using the symmetry result for bounded solutions of problem
(1.1) in the half-space Q := R x R, x R obtained in [9] we establish that the attractor A,
consists of functions u(z) := V(z3) which are independent of z; and z3 and consequently
satisfy the ordinary equation

V' (22) = f(V(22)) =0 V(0)=0,¢ V=0 (1.6)

Note that the set of bounded positive solutions of ODE (1.6) can be completely described
using e.g. the standard phase portrait technique. Using this description we prove finally that
every positive solution u(z) of problem (1.1) stabilizes as ;1 — oo to one of the positive
bounded solution V' = V,(z3) of problem (1.6).

A number of remarks which explains the imposed restrictions to the nonlinearity is given
in Section 5.

2. A priori estimates and solvability results.

In this Section we prove that problem (1.1) possesses at least one non-negative bounded
solution u and derive the estimate for such solutions which is of fundamental significance in
order to apply the dynamical approach to elliptic equation (1.1).

The main result of this Section is the following theorem.

THEOREM 2.1. Let ug € CSJ‘B(QQ) and let the first and second compatibility conditions at
0 are valid (i.e. ug(0,z3) =0 and 82, ue(0,z3) = f(0)). Then (1.1) possesses at least one
nonnegative bounded solution and every such solution u satisfies the estimate

llull 28100,y < Q(||U0||c§+ﬁ)e_7xl + Cf (2.1)

T = (x1,T2,T3) € 4, v > 0, Q is an appropriate monotonic function, and Cy is independent
of ug.

Proof. Let us firstly verify a priori estimate (2.1). To this end we consider (as usual)
the function w(t, z) = u?(¢,z) which evidently satisfies the equation

A,w = 2f(u)u + 2V,u.Vou > —20 + 20w, w|, _, = ug, wleO =0 (2.2)
Consider also the auxiliary linear problem
Azw; = —2C + 20wy, 'w1|zl=D = w|$1=0 = u%, wl‘m:o =1 (2.3)

with the same boundary conditions as for the function w.

LEMMA 2.1. Linear equation (2.3) possesses a unique bounded solution wy(z) which satisfies
the following estimate:
lwilloay < Cilluoll, o€ + Co (2.4)

Proof. The proof of the lemma is standard and based on the maximum principle. Indeed,
let us decompose wy (x) = v(z)+wv;(z), where vy () is a solution of non-homogeneous equation
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(2.3) with zero boundary conditions and v(z) is a solution of homogeneous equation with
non-zero boundary conditions. Then, evidently,

[villcy@y) < Co (2.5)
with Cy depends only on C'in the right-hand side of (2.3). In order to obtain the exponential
decaying of v(z) we introduce the functions 9y(z) := 1/ cosh(e(z; — h)) where € > 0 is a
sufficiently small number and A > 0. Then it is not difficult to verify that

[n(@)] < epn(z), [0h(2)] < 3e™n(z), ¥n(0) <e™ (2:6)
Let vp(z) := ¢ (z)v(x), then this function satisfies the equation
Agvp + Ly (z)vy, + LE (2)0y,vn — 20wy, = 0, vh‘ﬂ:O = Yn(0)ud (2.7)

and (2.6) implies that |Lj(z)] < Ce? and |L2(z)| < Ce (where C is independent of h).
Consequently if € > 0 is small enough the classical maximum principle works for equation
(2.7), therefore

”UhHCb(QH = th”Cb(Qo) (2.8)
Estimate (2.4) is an immediate corollary of (2.5) (2.8) and the third estimate of (2.6). Lemma
1.1 is proved.

Having estimate (2.4) and applying the comparison principle to the solutions w and w;
of (2.2) and (2.3) respectively and the evident fact that w = u? is non-negative we derive
that

lullasy < lwllemy < lwlloe < Cilluollgarsgye™ + Co (2.9)
Recall. that due to classical interior estimates for the Laplace equation (see e.g. [19]), we
have the following estimate for every small positive 6 > 0

llullc2-s(0,nB1) <
< C(||f(u)llze@npry + llullLe@nszy + x(2 — z1)||uo|| c2+5(0enB2)) < (2.10)

< Q(|Jull Ly nB2)) + Cx(2 — 71)||uollc2-s(0nB2), T € Q4

where the monotonic function @ and the constant C depend only on f and « and independent
of x € ) and of the concrete solution u, and x(z) is a classical Heaviside function (which
equals zero for z < 0 and one for z > 0). Remind that we assume the first compatibility
condition uo‘m:{] = 0 to be valid. This assumption is necessary in order to obtain C?%-
regularity in (2.10) in the case where z is near to the edge 99p).

Inserting now estimate (2.9) into the right-hand side of (2.10) we derive the analogue of
estimate (2.1) for C?*~°-norm:

ulle2-s(Brna.) < Qlluollgz-s)e™™* + C (2.10")

In order to derive estimate (2.1) it is sufficient to use now the elliptic interior estimate in
the form

l|lullc2+s0,nB1) <
< C(lf(w)ller@nsyy + el c@nszy + X(2 — 21)||[uollc2+8(00nB2)) <

< Qlluller@.nmzy) + Cx(2 - z1)|luollc248(0onm2), T € 4t
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(here we have implicitly used the second compatibility condition 8:321.5‘”:0 = f(0) in order
to obtain C?*# regularity near the edge 99). Inserting estimate (2.10’) into the last interior
estimate we derive inequality (2.1) for the C?*A-norm.

Let us verify now the existence of a positive solution for problem (1.1). To this end we
consider a sequence of bounded domains Qf, N € N, defined via

Qj\_{ = Q+ ﬂBéV+1

and a sequence of cut-off functions ¢y(z) = 1 if z € BY and ¢n(z) = 0 if z ¢ BY !,
0 < ¢ < 1. Consider also the family of auxiliary elliptic problems

A ~fuM) =0, ze 0, uﬂanr“w = UoPn, uN\aszf\QD =0 L}

Note that, according to our construction, u > 0 and, according to assumptions (1.2),

Nlanf
w® = 0 is a subsolution and wY = R is a supersolution for (2.11) if R is large enough. Thus
(see e.g. |26]), problem (2.11) has at least one non — negative solution R > u™¥(z) > 0. Note
that R is in a fact independent of N. Consequently, applying again the interior regularity
theorem (see estimate (2.10)) we derive that

||UN||02+5(B;nQ§) <C (2.12)

with C = C(f,uo) is independent of N and z € QY.

Having uniform estimate (2.12) one can easily pass to the limit N — oo in equation
(2.11) and construct a bounded non — negative solution u(z) of initial equation (1.1).
Theorem 2.1 is proved.

3. The attractor.

In this Section we study the behavior of the non-negative solutions of problem (1.1)
when x; — oo applying the dynamical system approach to elliptic boundary value problem
(1.1) in the unbounded domain €.

Recall that under such consideration we should fix some direction in our unbounded
domain €2, and interpret it as the ’time’ direction (see [27]). In our case it will be the z;-
direction then z; variable will play the role of "time’ variable and we (formally) will consider
(1.1) as an ’evolutionary’ equation in an unbounded domain €. The main difficulty which
arises here is the fact that the solution of (1.1) may be not unique and consequently we cannot
construct the semigroup corresponding to 'evolutionary’ equation (1.1) in the ordinary way.

One of possible ways to overcome this difficulty is to use the trajectory approach which
takes into the accordance the dynamical system to (1.1) in another way (following to [25,
27]). Namely, let us consider the union K™ of all bounded positive solutions of (1.1) which
corresponds to every ug € CEJ”G . Then a semigroup of positive shifts

(Thu)(x1, T2, x3) := u(x1 + h, T2, Z3) (3.1)

acts on the set K+: b
TRt Biauleec o () (3.2)

This semigroup acting on K™ is called the trajectory dynamical system, corresponding to
(1.1). Our next task is to construct the attractor for this system. Firstly we note that the
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uniform topology of Cbzﬂg is too strong for our purposes. That is why we endow the space
K™ by a local topology according to the embedding

t c CP (@) (3.3)

where by definition ® := CZ?(Q}) is a Frechet space generated by seminorms ||'||Cz+ﬁ(5énmg+)-_
Tg € Q+.
Recall briefly the definition of the attractor adopted to our case.

DEFINITION 3.1 The set A, C K™ is called the attractor for trajectory dynamical system
(3.2) (= tragectory attractor for problem (1.1)) if the following conditions are valid.

1. The set Ay is compact in CEP(Q1).

2. It is strictly invariant with respect to Ty: ThAiy = Agr

3. Ay attracts bounded subsets of solutions when x, — o0o. It means that for every
bounded (in the uniform topology of C, +’6) subset B C Kt and for every neighborhood
O(Ay,) in CHP topology there exists H = H(B, ) such that

loc

T,B C O(Ay) ifh > H (3.4)

is
compact in C?**#(Q) for every bounded Q; C Q, and the third one is equivalent to the
following;:

For every bounded subdomain €, C Q.. for every B — bounded subset of K+ and for
every neighborhood O(Atr| QI) in C?*#(Q;)-topology of the restriction A to this domain
there exists H = H(};, B, ©) such that

Note that the first assumption of the definition claims that the restriction Atr g,

(TwB)|g, C O(Awly,) if h> H (3.5)

o)
THEOREM 3.1.Let the assumptions of Theorem 2.1 hold. Then equation (1.1) possesses the
trajectory attractor Ay which has the following structure:

A =Tl K(Q) (3.6)

UJheT'f,‘ (3&'11332, $3) © Q= R b4 R+ X Rn and Symbo.-f K(Q) i the o Of il b rd
nonnegative solutions u(zx) € CE°(Q) of

Au—t =0 zebl, ul. —0 ulyp =1 (3.7)

Le. the attractor Ay consists of all bounded nonnegative solutions w of (1.1) in Q, which
can be extended to bounded nonnegative solution u in €.

Proof. As usual (see e.g. [1]) in order to verify that a semigroup T}, : KT — K™ possesses
an attractor we should verify that this semigroup is continuous for every fixed A > 0 and
that this semigroup possesses a compact attracting (or absorbing) set in K+.

The continuity of the semigroup T}, on K™ is obvious in our situation. Indeed, the
semigroup T}, of positive shifts along the z; axis is evidently continuous (for every fixed h)

~as a semigroup in Cot?(€0)) therefore it’s restriction to K+ is also continuous.

loc

Thus it remains to construct a compact absorbing set for T, : K+ — K.
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Let Bg be the R-ball centered in 0 in the space Cb2+*6(Q+). Then estimate (1.1) implies
that the set
MR = K+ M BR

will be an absorbing set for semigroup (3.2) (more precisely for R = 2Cy where Cj is defined
in (1.1)). But this set is not compact in ®. That is why we construct a new set

Vg :=TiMp C Mg C K™ (3.8)

Evidently this set is also absorbing. We claim also that this set is precompact in ®. Indeed,
by definition the set Vx consists of all bounded solutions u of equation (1.1) which can be
extended to bounded solution @, defined not for z; > 0, but for z; > —1, such that

Hﬁch?'*ﬁ([_l,m]Xgo) < h (3.9)

Note now that, due to (1.2), f € C! consequently we may apply the interior estimate (see
(2.10)) for the solution % not only with the exponent 2+ 3, but with an arbitrary one 2+ 3’
with 4’ < 1. Particularly, if we fix 3/ > ( then the interior estimate together with (3.9) gives
us that

”uHCf*SI{T;Q.‘_) == ||u||cv§+ﬁ’m+} & (310)

where the constant R; depends only on R and f. Consequently, we have proved that the set
Va e P @y (3.11)

and is bounded in it. Note now that the embedding Cerﬁ’(QJr) C ® is compact if 3’ > 3 and
consequently Vg is really precompact in @. (This was the main reason to endow the trajectory
phase space by the ’'local’ topology of @ but not by the 'uniform’ topology of CEJ”B(Q_,_).
Indeed, the embedding CEW’(Q_,_) C C§+’3(Q+) is evidently non-compact and we cannot
construct the compact absorbing set in this topology. Moreover, the elementary examples
show that problem (1.1) really may not possess the attractor in a 'uniform’ topology.)

Thus, the precompact absorbing set Vp is already constructed and it remains to find
the compact one. The most simple way is to take the compact absorbing set Vi := [Vg]s.
where [-]s means the closure in ®. Indeed, since Vg C Mg C K and Mg, is evidently closed
in ® then Vi, C K™ and consequently it is really the compact absorbing set for semigroup
(3.2). Thus (due to the attractor’s existence theorem for abstract semigroups) semigroup
(3.2) possesses an attractor Ay, which can be defined by formula

Atr = Nizo[ Uszn Te Vi) (3.12)

As usual representation (3.6) is a standard corollary of definition (3.12) (see [1, 24]) but
since this representation is of fundamental significance for our purposes we recall shortly
its proof. Indeed, let @(z), z € Q be a non-negative bounded solution of problem (3.7).
Then, particularly the sequence Ilg, (T_su), h € N is uniformly bounded in CodR(9,),
consequently, according to the attractor’s definition

ThHQ+ (T_hﬁ) S .Aﬁ» in®ash— o
From the other side TpIlg, (T_pu) = g, u. Thus, IIg, 4 € A and consequently

Mo, K(Q) C A" (3.13)
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Let us prove the opposite including. Let u € A;. Then (3.12) implies that there are a
sequence h, — 400 and a sequence of solutions u, € VY such that
u=®—lim T} u, (3.14)

=00

Note that the solution T} u, is defined not only in €, but in the domain T} €, :=
(—hy,00) X 2 and
||un||cbz+ﬁ(Tth+) =R (3-156)

And consequently arguing as in the proof of compactness of V we derive that the sequence
T}, Un, n > ng is precompact in Cf;gﬁ (Th,,, +1524) for every ng € N. Passing to a subsequence if
necessary and using the Cantor diagonal procedure and the fact that h, — oo we may assume
that this sequence converges to a some function u € C‘fotﬁ (2) in the spaces Ci:;ﬁ (They+1504)
for every ng € N. Then (3.15) implies that @ € CZT?(Q). Moreover since Tj, u, are the
non-negative solutions of (1.1) then passing to the n — oo we easily obtain that u is a
non-negative solution of equation (3.7) and formula (3.14) gives us that Il % = u. Thus,
u € Ilg, K(Q2). Theorem 3.1 is proved.

REMARK 3.1. Note that neither our concrete choice of of the domain 0, = R x R, x R"
nor the concrete choice of the ‘time’ direction x1 are not essential for the of the trajectory
g{ynamicai system approach. Indeed, let us replace the ’time’ direction x1 by any fized direction
'€ R™*2 and (and correspondingly (Thu)(z) := u(z+hl). Then the above construction seems
to be applicable if the domain Q4 satisfies the following assumptions:

1. TpQdy C Q4 (it is necessary in order to define the restriction Ty, to the trajectory
phase space K ).

2. Q = Up<oT_pSy (it is required in order to obtain representation (3.6)).

The trajectory attractor for the elliptic problems in the domains 2, which satisfy 1 and
2 with Q = R"? has been constructed in [27]. The result of Theorem 3.1 shows that this
approach works not only for Q. such that in the condition 2 Q = R™2 but for a larger class
of domains §2.

4. Symmetry and stabilization.

In this Section we restrict ourselves to consider only the where €}, is 3-dimensional
(n = 1). Then, using the description for the positive bounded solutions of (3.7) given in [9],
we obtain the additional information about the behavior of solutions of initial problem (1.1).

PROPOSITION 4.1. Let assumptions (1.2) hold and let n = 1. Then any non-negative bounded
solution u(zx) of equation (3.7) depends only on the variable x4, i.e u(z) = V(z2) where V (z)
is a bounded solution of the following problem:

V2 2y = (Vz)) =0, 08> 0,-30) =0, "Vi{2y220 (4.1)

The proof of this Proposition is given in [9] for the case where the solution u(z) is
strictly positive inside of Q. The general case can be reduced to this one using the following
version of the strong maximum principle.

LEMMA 4.1. (|9]) Let V_ C R" be a (connected) domain with the sufficiently smooth boundary
and let w € C*(V) N C(V) satisfy the following inequalities

Ayw(z) —lz)w(z) <0, z€V, w(z) >0, z€V (4.2)

10
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Assume also that |l(z)| < K for x € V. Then either v(z) =0 or v(z) > 0 for every interior
pointz € V.

In order to apply the lemma to equation (3.7) we rewrite it in the following form

Ad-lzu=F0)<0, l(z):= (4.3)
Since f € C* and the solution t(z) is bounded then I(z) is also bounded in Q. Thus, according
to Lemma 1 either %(z) = 0 (which is evidently symmetric) or %(z) > 0 in the interior of £
and then Proposition 4.1 follows from the result of [9] mentioned above. Proposition 4.1 is
proved.

Denote by Ry the set of all bounded non-negative solutions V'(z) of problem (4.1). Then
Proposition 4.1 implies that

Ay =Ry (4.4)

Let us study now the positive solutions of problem (4.1). It is well known that every non-
negative bounded solution of this problem should be monotonically increasing V(z;) > V(22)
if 21 > 2o, consequently there is a limit

2= Y ) sy Jim YV(2) 1 flzm) =0 0¥l sw 220 (4.5)

z——400

Moreover, it follows from Lemma 4.1 that either V(2) = 0 or V'(z) > 0 for every z > 0.
Multiplying equation (4.1) by V' and integrating over [0,z] we obtain the explicit
expression for the derivative V'(z)

V'(2)? = —2F(V(2))+C (4.6)

where F(V) := — fOV f(V)av.
Passing to the limit 2 — 400 in (4.6) and taking into account (4.5) one can easily derive
that C = 2F(z;). Therefore we obtain the following equation for V/(z), stabilizing to zo:

V'(2)* = 2(F(20) — F(V(2)) (4.7)

Assume now that F(z9) > 0 (in the other case V(z) = 0). Then the solution V,,(2) of (4.7)
which satisfies (4.5) exists if and only if F'(z) — F((2) > 0 for every z € (0, zp). Moreover,
such solution is unique because V,, satisfies (4.1) with the initial conditions

V(0) =0, VL,(0) = vZF(20) (48)
Denote
R} :={20 €Ry : f(20) =0, F(2)— F(2) > 0 for every z € (0, 20)} (4.9)

Note that set (4.9) is totally disconnected in R. Indeed, otherwise it should contain a segment
o, B] € R}, B> > 0. Then, f(z) =0 for 2 € [a, 8] and consequently F(z) = F(8) for
every 2 € [a, 8], which evidently contradicts the fact that 8 € R7.

Thus, we obtain the following proposition.

1]
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PROPOSITION 4.2. There is a homeomorphism
7: (Rv,Cii’ (R4)) — (R}, R)

Moreover, the set 'R;f and (consequently) Ry are totally disconnected.

Indeed, (4.8) defines a homeomorphism between R} and the set Ry (0) := {(0,V’(0)) :
V € Ry} of values at t = 0 for functions from Ry. Recall that Ry consists of solutions
of second order ODE (4.1) and, consequently, thanks to a classical theorem on continuous
dependence of solutions of ODE’s, the set Ry is homeomorphic to Ry (0) and this homeomor-
phism is given by the solving operator S : (V(0), V'(0)) — V(t) of equation (4.1). Proposition
4.2 is proved.

REMARK 4.1. Note that, although for generic fs the sets 'R}’ ~ Ry are finite, these sets
maybe even uncountable for some very special choices of the nonlinearity f. The simplest
example of such f is the following one:

f(z) = —dist(z, K) (4.10)

where K is a standard Cantor set on [0,1] and dist(z, K) means a distance from z to K.
Indeed, it is easy to verify that for this case R™ = K and consequently Ry consists of
continuum elements. (To be rigorous, function (4.10) is only Lipschitz continuous (but not
from C') and does not satisfy also the second assumption of (1.2). but slightly modifying
this function one can construct the function f, which will satisfy all our assumptions and
R}' = ’R}* =00}

We state now the main result of this Section.

THEOREM 4.3. Let the assumptions of Proposition 4.1 hold. Then for every nonnegative
bounded solution u of problem (1.1) there is a solution V(z3) = V,(z2) € Ry of problem
(4.1) such that for every fired R and x = (x1, T2, Z3)

lu— Villezresr nayy = 0, @ i= (21 + h, B2, 73) (4.11)

when h — o0.

Proof. Indeed, consider the w-limit set of the solution u € Kt under the action of the
semigroup 7}, of shift in the x; direction:

W(U) = ﬂh?_o [ Usah Tsu]¢. (412)
Recall that T}, possesses the attractor A in K, consequently, set (4.12) is non-empty and
w(u) C Ay (4.13)

It follows now from Proposition 4.1 that w(u) C Ry.

Note that from the one side the set w(u) must be connected (see e.g. [15]) and from the
other side it is a subset of the set Ry which is totally disconnected (due to Proposition 4.2).
Therefore w(u) consists of a single point V,, C Ry:

w(u) = (Vi) (4.14)

12
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The assertion of the theorem is a simple corollary of this fact and of our definition of the
topology in K. Theorem 4.1 is proved.

5. Concluding remarks.

In conclusion of the paper we discuss assumptions (1.2) imposed to the nonlinear term
f(u) in order to obtain the results of Section 4. Note firstly that sign condition (1.2)(3) is
evidently essential in order to prove the solvability of (1.1) in the class of positive bounded
solutions for every positive bounded initial data up (and in a fact it is also essential for
Proposition 4.1 and Lemma 4.1, see e.g. [9]).

The assumption f € C! is not necessary neither for proving the existence of a positive
solution of problem (1.1) (in Section 2) nor for applying the trajectory dynamical system
approach to this problem (see Section 3) and can be weakened to f € C(R,R), see |25
or [27]. Note however that the (local) Lipschitz continuity of the nonlinear term is very
essential for the symmetry result, formulated in Proposition 4.1 (see [9]) and consequently
for all results, obtained in Section 4.

Thus, assumptions (1.2)(1) and (1.2)(3) seem to be close to optimal in order to derive the
results of Section 4. In contrast to them, 'dissipativity assumption’ (1.2)(2) is far from optimal
and has been imposed in such a form only in order to avoid the additional technicalities and to
make the trajectory approach to study the behavior of positive solutions more clear. In a fact,
it can be proven using the standard sub and supersolutions technique and some monotonicity
results for positive solutions of elliptic equations that under assumptions (1.2)(1) and (1.2)(3)
problem (1.1) possesses at least one positive bounded solution for every positive bounded
initial value wug if and only if it’s one dimensional analogue

Vi =iV =020, V(O =M (5.1)

is solvable in the class of bounded nonnegative solutions for every M > 0. Remind that (5.1)
is second order ODE of Newtonian type and can be easily analyzed using e.g. the phase
portrait technique.

In the case where n = 1 using the explicit description of the set of bounded positive
solutions of the equation (1.1) in € one can easily show that the attractor A, exists if and
only if the set K of all bounded positive solutions of the problem

V'(2) — f(V(2) =0, 2> 0, V(0) =0 (5.2)

is globally bounded in C(R,).

Combining (5.1) and (5.2) we derive after the straightforward analysis of the correspon-
ding phase portrait that under assumptions (1.2)(1) and (1.2)(3), problem (1.1) possesses
the trajectory attractor Ay if and only if the potential F(v) := — [ f(u) du achieves itrs
global maximum on [0, 00), i.e. if there is vy > 0 such that

F(z) = max F(v) (5.3)
vER
Hence, all results of Section 4 remain valid in the case where condition (1.2)(2) is replaced
by (5.3). Evidently, condition (1.2)(2) is sufficient, but not necessary for (5.3).
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